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Abstract: We study combinatorial, topological, and geometric properties of phase portraits of nonlinear dynamical systems which
simulate functioning of some simple circular gene networks. The principal aim of these studies in general is description of behavior of
their trajectories in terms of qualitative theory of the ordinary differential equations in order to predict results of numerical experiments
with gene networks models. Our main results concern detection and localization of periodic trajectories (or cycles), invariant domains,
and invariant surfaces in these phase portraits by means of combinatorial decomposition of these portraits to elementary blocks and
construction of corresponding oriented graphs, so called State Transition Diagrams. In some cases considered here and previously,
these trajectories and surfaces are not stable, but they play an important role in geometry and topology of the phase portraits, as
unstable equilibrium points do. In this paper, using general ideas of proof of the classical Perron-Frobenius theorem on characteristic
polynomials of positive matrices, we find sufficient conditions of existence of an invariant two-dimensional surface in six-dimensional
phase portrait of one dynamical system of this type. Actually, some of these conditions are necessary as well. Most of these geometric
constructions and qualitative results arise from our previous joint publications with Vitaly A. Likhoshvai, see the reference list below.
Key words: dynamical systems; phase portraits; gene networks models; periodic trajectories; invariant surfaces; State Transitions
Diagrams.
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KoMmOumHaToOpHas 1 reoMeTpudecKkasi CTpYKTYPbl Mozeseit
KOJIbII€BbIX T€HHBIX CeTel

B.II. Tony6siTHUKOB 2, JI.C. MUHYIIKIMHA®

AHHoTauyua: Mbl n3yyaem KOMOGMHATOPHbIE, TOMONOrMYECKMe 1 reoMeTpUYeckme CBONCTBA $pa3oBbiX MOPTPETOB HENVHEWNHbIX ANHa-
MUYECKINX CUCTEM, KOTOPble MOAENMUPYIOT GYHKLMOHMPOBaHNE HEKOTOPbIX MPOCTENLINX KOJbLIEBbIX reHHbIX ceTell. OCHOBHaA 3aaaya
3TUX UCCNEeAOBaHNI COCTOUT B ONMCaHNM NOBeAEHNA TPAaeKTOPUIA TaKUX CUCTEM B TEPMUHAX KaueCTBEHHOW TeOPUMN OObIKHOBEHHbIX
anddepeHLanbHbIX ypaBHEHWI C Lienblo NpeAckasaHna pe3ynbTaToB YNCIEHHbIX SKCMEPUMEHTOB C STUMMW MOAENAMM FreHHbIX CeTel.
OcHoBHble pe3ynbTaTbl PabOTbl COCTOAT B OTbICKaHUM U IOKaNM3aLuuy Nepuoanyeckrix TpaekTopuin (Mnu LMKIOB), MHBAPUAHTHbIX 06-
nacTell U MHBapVaHTHbIX MOBEPXHOCTe B paccmaTprBaeMbix Gpa3oBbix nopTpeTax. OANH 13 OCHOBHbIX METOAOB HaLLNX NCCIEA0BAHNN
OCHOBaH Ha pa3bueHnn Gpa3oBbiX MOPTPETOB Ha SNeMeHTapHble 6OKM 1 KOHCTPYMPOBaHMN OPUEHTNPOBaHHbIX rpadoB creuvanb-
Horo Buaa — [inarpamm Mepexofa. B HeKoTopbIx cnyyasx, paccMaTprBaeMblX 34eCh 1 B NpefblAyLmx nyonnkaumax, 3Tm Tpaektopun
1 MOBEPXHOCTN HEYCTONUMBBI, HO OHV UTPAIOT BaXKHYO POJib B OMUCaHWM FEOMETPUN 1 Tononorun Gasosbix MOPTPETOB yKa3aHHbIX
AVNHAMUYECKNX CUCTEM, TaKylo Xe, KaK 11 HEYCTONUMBbIE MONOXeHNA paBHOBecuA. B HacToAweln paboTe, NCNonb3ya Knaccmueckyto Te-
opemy OpobeHuyca — MeppoHa 0 XxapakTepUCTUUECKMX MHOTOUIeHaX MONOXUTENbHbIX MaTPUL, Mbl HAXOAUM JOCTAaTOUHbIE YCI0BUA
CyL|eCTBOBAHUA VHBapWaHTHOW [IByMEPHON MOBEPXHOCTU B LIECTMEPHOM Ga30BOM MOPTPETe OAHON ANHAMUYECKOWN CUCTeMbI pac-
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Combinatorics and geometry of circular gene
networks models

CMaTpriBaeMoro Tuna. Hekotopble 13 3TUX YCIOBUI ABAAIOTCA TaKXKe 1 HeobXxoanMbIMU. OCHOBbI GOMbLUEN YaCTN FEOMETPUYECKUX KOH-
CTPYKLWI 1 pe3ynbTaToB O KaUeCTBEHHOM NOBEAEHN TPAEKTOPUIA TaKUX AUHAMUYECKUX CUCTEM Obinv 3aNM0XeHbl B HALLNX COBMECTHbIX
ny6nukaunax c Butanmem AnekcaHaposryem JIxoLwBaem, CM. CMUCOK LUTUPYEMOI nTepaTypbl.

KnioueBble cnoBa: friHaMnyeckme cuctembl; Ga3oBble MOPTPETbI; MOLENN FEHHbIX CeTel; epuognyeckmne TpaekTopun; MHBapraHTHbIe

NopTPEeTHI; AXarpaMmMbl MePexoaoB.

Introduction

Modeling of gene networks functioning by means of
nonlinear dynamical systems arising from the Mass Action Law
andstudies of qualitative properties of solutions of these systems
are investigated in numerous publications during last 60 years
(Hastings et al., 1977; Banks, Mahaffy, 1978; Glass, Pasternack,
1978; Baer et al., 2006). There were also many important
mathematical results related to these topics (Abraham, Robbin,
1967; Hirsch, 1988; Dudkowski, 2016) etc. We list here just some
of them, which we follow in our papers (Golubyatnikov et al.,
2004; Gaidov et al., 2006; Gaidov, Golubyatnikov, 2014; Ayupova
etal., 2017), see also references therein.

Our recent results were devoted to description of
topological and combinatorial structures of phase portraits of
the circular gene networks models, which were constructed in
their simplest form in (Elowitz, Liebler, 2000). The main aim of
our studies here consists of detection of periodic trajectories
(cycles), determination of their locations in the phase portraits,
and in finding conditions of existence, stability, uniqueness
(or non-uniqueness) of these cycles. Importance of biological
meaning of these questions is well-known (Kolchanov et al.,
2008; Likhoshvai et al., 2020), and we shall restrict ourselves
to mathematical problems which arise here naturally as well.
In preparation of numerical experiments with gene networks
models, one should estimate the values of their parameters. So,
in our theorems we determine conditions which provide the
desired qualitative and quantitative behavior of trajectories of
these models.

Some of our results are connected with detection of
invariant domains and invariant surfaces of phase portraits of
dynamical systems which simulate gene networks functioning.
Usually, these invariant domains allow to describe attractors of
the dynamical systems. The invariant surfaces either are located
in the boundaries of basins of attraction of these attractors, or
allow to reduce the dimension of dynamical systems, and due
to this reduction, the numerical experiments with the gene
networks models can be simplified essentially, see (Bukharina
et al., 2018; Golubyatnikov, Kirillova, 2020).

For example, following (Marnellos, Mjolsness, 1998;
Furman, Bukharina, 2008), we have studied in (Akinshin et al.,
2014; Ayupova, Golubyatnikov, 2017) mathematical models
of interaction of two, respectively, three cells in the proneural
cluster of D. melanogaster mechanoreceptor on early stage of its
development. Phase portraits of these models contain invariant
surfaces on boundaries of attraction basins of their stable
equilibrium points, and for appropriate values of parameters
of these models, these invariant surfaces contain unstable
periodic trajectories of corresponding dynamical systems.

In memory of Vitaly A. Likhoshvai

Dynamical systems and their phase portraits

The main aim of this paper is description of combinatorial
and geometric structure of phase portrait of block-linear
dynamical system

dm1
dt

dp;

dt
dm,-
dt

Ly(p3) — kimy;

I;(m) - lp;

= Li{pj_1) - kim;. M

This is a simple version of a regulatory switch, see (Boczko et
al., 2007; Chen et al., 2018).

Here and below, j = 1,2,3; i = 2,3; all parameters, variables,
and functions are non-negative, the monotonic step-functions
L, (), I(2) are defined by Lj(2) = ajk; for 0<z<1; Li(z) = 0 for 1< z
they correspond to negative feedbacks;

M(2)=0for 0<z<1;T(2) = bjl; for 1< z; these functions describe
positive feedbacks, see (Golubyatnikov, Minushkina, 2019). We
assume in our considerations that

a> 1; bj>1 . (2)

In smooth dimensionless symmetric case L{(2) = a(1 +2V) 1+
B: I(2) = uz; k=1; l= for all j, this system appeared in (Elowitz,
Leibler, 2000) as a model of one natural gene network with three
different proteins TetR, Acl, Lacl, which have concentrations py,
D2, P3, respectively. The variables mq, m,, ms3, denote concentra-
tions of corresponding mRNAs. This symmetric smooth case of
the system (1) was studied later in (Glyzin et al., 2016).

Since all these three proteins in the gene network are quite
different, we consider here asymmetric version of the system
(1): all the parameters k;, l;are different as well as the functions
LijandT;

Smooth asymmetric versions of the system (1) were exam-
ined in (Ayupova et al., 2017; Bukharina et al., 2018; Golubyat-
nikov, Kirillova, 2020) where conditions of existence of cycles
were established.

Similar block-linear dynamical systems of different dimen-
sions as models of gene networks functioning are considered in
(Ayupova, Golubyatnikov, 2014; Golubyatnikov, Ivanov, 2018a),
where the main questions concern detection of the cycles and
localization of their positions in the phase portraits. The first step
of these studies is determination of an invariant domain which
contains the cycles, the equilibrium points, and other objects
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of interest in these portraits. It was shown in (Golubyatnikov,
Minushkina, 2019) that the parallelepiped Q° = [0, a;] x [0, by] x
[0, @] x [0, by] x [0, as] x [0, bs] in R® is an invariant domain for
the block-linear dynamical system (1), and for its smooth analo-
gues, see (Ayupova et al.,, 2017), where the smooth functions
L; decrease monotonically (negative feedbacks), and the
smooth functions ; are monotonically increasing (positive
feedbacks). Following results of these publications, we decom-
pose Q by six hyper-planes m;=1,p;=1, which contain the point
E = (1;1;1;1;1;1) in Q® where right-hand sides of all equations
of the system (1) have discontinuities. So, this domain Q®is de-
composed to 64 blocks; each block B can be enumerated natu-
rally by binary multi-index: {€1€,€3€4€5€6} Where

€1 =0if 0 <m; < 1;&,;4=1if 1 < mforall points of B;
gy=0if 0 < p;<1;€y=1if 1 < p;forall points of B. (3)

Analogous decompositions of the invariant domains Q of
quite different n-dimensional dynamical systems of the type
(1), block-linear or smooth, with monotonic functions in right-
hand sides of their equations were considered in (Bukharina
et al.,, 2018; Golubyatnikov et al., 2010; Golubyatnikov, lvanov,
2018a). Note, that for smooth systems of this type the role of
the common point E of all 2" blocks of the decomposition plays
the equilibrium point of each of these systems. As it was shown
in (Golubyatnikov et al., 2004, 2010; Golubyatnikov, Kirillova,
2020), this point does exist and is unique, and for any pair of
incident blocks B, B, separated in Q" by (n-1)-dimensional hy-
per-face F = By N By, trajectories of all points of this intersection
transit either from B; to B,, i.e. B; — By, or in the opposite direc-
tion from B, to By, i.e., B, — By.

Definition (Ayupova et al., 2017). The valence V(B) of a block
Bis a number of its hyper-faces {Fs} such that trajectories of the
points of these hyper-faces leave the block B to the incident
ones.

State Transition Diagrams
We have studied in (Golubyatnikov et al, 2004, 2005)
different 3D versions of the system (1):

dx/dt=f (z) - k x; dy/dt=f,(x) - k,y; dz/dt=f,(y) - k.z (4)

where the monotonically decreasing functions tj are
smooth or block-linear. It was shown there that the domain
Q3=I0, f,(0)IXI0, £,(0)IX[O, £,(0)] in R® is an invariant domain of
the system (4), and that in its decomposition to 8 blocks enu-
merated by multi-indices {€;€5¢3}, the blocks {000} and {111}
are 3-valent. The remaining 6 blocks are 1-valent and can be ar-
ranged to a circular diagram

{001}—={011}—{010}—{110}—{100}—»{101}—{001}—... (5)

Here the arrows show the unique way for trajectories of the
system (4) to leave these blocks and to travel in their union. For

KomburHaTopHas 1 reomeTpuyeckasn CTpyKTypbl
MoJeneli KoNbLeBbIX FTeHHbIX ceTeln

some other classes of gene networks models, similar diagrams
were used in description of attractors of trajectories, and were
called state transition diagrams (Glass, Pasternack, 1978), or
state transition graphs (Abou-Jaoudé et al., 2016).

Note, that if the functions l;in the right-hand sides of the
equations are not monotonic (even in the unimodal case), then
trajectories of these higher-dimensional dynamical systems
can exhibit chaotic behavior, see (Golubyatnikov et al., 2005;
Likhoshvai et al., 2013, 2015). In the 3D case these trajectories
are not so chaotic (Gaidov et al., 2010).

Now, in the case of the dynamical system (1) and its smooth
analogues, all their 1-valent blocks can be arranged to the state
transition diagram

{110011}—{010011}—{000011}—{001011}—{001111}

T !
{1 10T010} {oo1l1o1} (6)

{110000}{110100}+{111100}{101100}+{001100}

Figure 1. State transition diagram composed by 1-valent blocks of the
system (1)

Let W, be their union. This is an invariant domain of the sys-
tem (1). We have proved in (Golubyatnikov, Minushkina, 2019)
that if aj>1, bj>1, see (2), then W contains a cycle C which travels
from block to block according to arrows of the diagram (6).

In the case of the system (4), it was shown in (Golubyatnikov,
Ivanov, 2018b) that if £,(0), £,(0), £,(0) > 1, then the union of the
1-valent blocks listed in (5) contain a unique cycle, and that this
cycle is stable, see also (Ayupova, Golubyatnikov, 2014). Most
of the steps of the proofs of these 3D results on uniqueness
and stability of the cycle in the union of 1-valent blocks can
be extended to higher-dimensional cases, for example to
the system (1). Numerical experiments (Ayupova et al., 2017;
Bukharina et al., 2018; Likhoshvai et al., 2020) also confirm the
hypothesis that for any-dimensional systems of this type, the
union of their 1-valent blocks, such as W, shown on the Figure 1,
contains a unique cycle which is stable.

The invariant domain Q° contains also 40 blocks of the
valence 3, and 12 blocks of the valence 5, which can be arranged
to a diagram (7), see the Figure 2.

In contrast with W, the union W5 of all the 5-valent blocks
listed in this diagram is not an invariant domain. For example,
trajectories of the points of the block {111001} can transit to
the 5-valent block {011001}, as it is shown in the diagram (7),
but they can pass also to four 3-valent blocks {110001},
{111101}, {111011}, and {111000} which are not listed in the
diagram (7).

{111001}—{011001}—{011000}—{011010}—{011110}

T 1
{101001} {0101110} 7)
T

{100001}{100101}+{100111}{100110}+{000110}

Figure 2. State transition diagram composed by 5-valent blocks of the
system (1)
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Theorem. If a>2, bj> 3 for all j, then the non-invariant do-
main W, contains an invariant piecewise linear 2-dimensional
surface M. Trajectories of all points of this surface tend to the
discontinuity point E in a spiral way.

This surface M is contained in the boundary of basin of at-
traction of the limit cycle C.

It was shown in (Golubyatnikov, Ivanov, 2018a) that if the
inequalities (2) are not satisfied, then behavior of trajectories
of the system (1) and its block-linear analogues is quite trivial,
there are no limit cycles, just one stable equilibrium point.

If one represents the multi-indices {&;€,€3€4€5€¢} in the dia-
grams (6), (7) by decimal numbers, then the arrows of these dia-
grams will correspond to addition of +2™ for m=0, 1, 2, 3, 4, or 5.
Namely, these arrows describe changes of the decimal indices
of blocks as follows:

for (6): =32; -16; +8; +4; -2; -1; +32; +16; -8; -4; +2; +1;
for (7): =32; -1; +2; +4; -8; -16; +32; +1; -2; -4; +8; +16.  (8)

In both cases, we start from the left arrows in the top rows,
up to signs we have here geometrical progressions.

Similar interpretation has the diagram (5), and analogues of
all these diagrams constructed in (Golubyatnikov et al., 2010;
Bukharina et al., 2018; Golubyatnikov, Kirillova, 2020).

Combinatorial structure of the union W3 of the 3-valent
blocks in the invariant domain Q®and its analogues in other di-
mensions is much more complicated than that of W, and Ws.
For example, for 5-dimensional dynamical system of the type
(4), considered in (Golubyatnikov et al., 2010), transitions from
3-valent blocks to 3-valent blocks is not described by just geo-
metrical progressions as in (8). However, we conjecture that for
the system (1) the domain W3 should contain at least one invari-
ant surface as Ws.
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